
The Cytotoxicity Effect of Recombinant Arazyme on Breast 
and Ovarian Cancer Cells

Ovarian cancer is the third most prevalent and dead-
liest gynecological malignancy in the female repro-

ductive system. It presents a significant challenge for 
healthcare systems worldwide because of its aggressive 
growth, rapid metastasis, substantial invasion, and poor 
prognosis.[1] Breast cancer is the most prevalent cancer, 
and after lung cancer, it is the second leading cause of 
cancer death.[2]

The shortage of efficient anti-cancer agents and the high 
incidence, morbidity, and mortality rates of ovarian and 
breast cancer indicate that designing new and effective 
therapeutic agents to treat ovarian and breast cancer pa-
tients is crucial. Plant- and bacterial-derived products are 
becoming known as the main sources of new and effective 
anti-cancer agents to develop for the treatment of meta-
static ovarian and breast cancer. In the experimental mod-
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els, a mixture of exogenous proteinases such as trypsin, 
chymotrypsin, and papain was administered, and tumor 
growth was effectively inhibited.[3]

The bacterial protease that has a protective effect on can-
cer cells is arazyme. These zinc metalloproteases belong 
to the serralysin family. Arazyme with a relative molecular 
mass of 51.5 kDa was secreted by Serratia proteamaculans.
[4, 5] A previous study revealed that arazyme, by inducing 
overexpression of SMP30, inhibition of the TGF-β/Smad 
pathway, and enhancing antioxidant expression, could 
protect against acute hepatic damage induced by CCl4.[6] In 
addition, this enzyme has an anti-inflammatory effect that 
inhibits inflammation by cleaving cytokines, including IL-6 
and MCP-1, and adhesion molecules because it may hydro-
lyze pro-inflammatory molecules such as bradykinin and 
histamine.[7, 8] In murine metastatic melanoma, arazyme 
cleaved tumor matrix metalloprotease 8 (MMP-8) antibod-
ies and the tumor cell surface adhesion receptor CD44. In 
addition, arazyme effectively inhibits melanoma develop-
ment.[9]

In this study, various aspects of the in vitro anti-cancer ef-
fects of recombinant arazyme (r-arazyme) were assessed 
by evaluating cell viability, adhesion/invasion, and apop-
tosis pathways in MCF-7 (human breast adenocarcinoma) 
and SKOV3 (human ovarian cancer) cell lines.

Methods

Bacterial Strain and Cell Lines
The Escherichia coli BL21 strain (DE3) and TOP10 were pur-
chased from Novagen Inc. (Madison, WI, USA). MCF-7 and 
SKOV3 cell lines were purchased from Pasteur Institute 
(Tehran, Iran).

The Expression of Arazyme Protein
The expression vector pET28a, which harbors a T7 pro-
moter, kanamycin-resistant gene, and 5' six His-tag, was 
selected for the expression of the arazyme-encoding 
gene (araA), whose sequence was obtained from the NCBI 
gene bank (Accession No: AY818193.1). Furthermore, the 
restriction sites of BamHI and XhoI (Fermentas, Litho-
nia) were added at the 5' and 3' ends, respectively. The 
pET28a/araA construct was prepared by Biomatik Corpo-
ration (Cambridge, Ont., Canada), and DNA sequencing, 
restriction digestion, and PCR were used to verify the 
correct insert of the araA. The IPTG concentration (1 mM) 
used to induce araA expression in E. coli BL21 (DE3) was 
optimized in a previous study 10. The size of r-arazyme 
was approximately 51.5 kDa according to the SDS-PAGE 
gel.[10] Because the overexpression of the recombinant 
protein was obtained, the on-column re-solubilization 

protocol was employed at the same time as the affinity 
purification of the protein was performed by a Ni-NTA 
agarose-based procedure, as previously described.[11-15] As 
previously stated, the pure recombinant protein was veri-
fied by Western blotting with a monoclonal anti-polyHi-
stidine–Peroxidase antibody (Cat# A7058, Sigma-Aldrich, 
USA).[12]

Cell Culture
RPMI-1640 medium (Gibco, Germany) comprising 1% 
penicillin/streptomycin (100 U/mL penicillin and 100 mg/L 
streptomycin) and 10% fetal bovine serum (FBS) was used 
to culture MCF-7 and SKOV3 cells at 37° C in the presence 
of 5% CO2 for 72 h. All chemicals and cell culture medium 
were purchased from Gibco (Grand Island, NY, USA).

MTT Assay to Determine Cell Viability 
To examine cell viability, the 3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was 
employed for MCF-7 and SKOV3 cell lines, as previously 
described.[16-18] Briefly, 1 × 105 cells/mL of cells were treat-
ed with 4, 8, 16, 32, 64, and, 128 µg/ml of r-arazyme for 24 
h. MTT solution (Sigma-Aldrich; USA) was applied to the 
cells, which was then replaced with dimethyl sulfoxide 
(DMSO, Sigma-Aldrich). The absorbance was measured at 
570 nm. The percentage of cytotoxicity activity was cal-
culated as follows: cytotoxicity activity (%) = [1 − (absor-
bance of experimental well/ absorbance of negative con-
trol well)] × 100.

Lactate Dehydrogenase (LDH) Assay to Assess Cell 
Cytotoxicity
Briefly, to perform the lactate dehydrogenase (LDH) release 
assay,[19] MCF-7 and SKOV3 cells were incubated with differ-
ent concentrations of r-arazyme (16, 32, 64, and, 128 µg/ml) 
for 24 h. The cells were lysed and mixed with the LDH reac-
tion solution, and the absorbance of the reaction mixture 
was measured at 490 nm.

Cell Apoptosis Assay by Annexin V/PI Kit Staining
Annexin V/PI staining was used to assess apoptosis. For this 
purpose, in 6-well tissue culture plates, MCF-7 (2×105 cells/
well) and SKOV3 (2×105 cells/well) were treated with con-
centrations of 16, 32, 64, and, 128 µg/ml of r-arazyme for 24 
h. The cell culture supernatant was then separated using 
a centrifuge (1500 g) for 5 min. The cell pellet was washed 
twice with PBS and stained with PI (6 mg/ml) and Annexin 
V (5 mg/ml) solution for 20 min in the darkroom. A FACScan 
flow cytometer (Becton Dickinson, San Jose, CA, USA) and 
FlowJo software version 10 (FlowJo, LLC, USA) were used to 
examine the cells.
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Detection of Caspase-3 and -9 Activity by 
Colorimetric Assay
Caspase-3 and -9 activities induced by 16, 32, 64, and, 128 
µg/ml of r-arazyme were measured using the caspase‐3 or 
caspase ‐9 colorimetric assay kit (Abcam, Cambridge, MA, 
USA) according to the manufacturer’s instructions.[20]

Gene Expression Changes by Real-Time Quantita-
tive PCR
The mRNA expression level of BAX and BCL-2 (apoptosis-
regulatory genes) as well as VEGF-A, VEGFR-1, and VEGFR-2 
(angiogenesis genes) were evaluated by quantitative RT-
PCR (SYBR Green-based) with specific oligonucleotide 
primers, as previously described.[21-23] Briefly, the cells were 
plated at a density of 1 × 106 cells/well and treated with 
30 µg/ml r-arazyme, followed by incubation at 37° C in 5% 
CO2 for 24 h. Total RNA was extracted using YTzol reagent 
(YTA, Iran), and cDNA was generated using a kit (M-MLV 
reverse transcriptase, first-strand Buffer (250mM Tris-HCl 
(pH 8.3 at 25°C), 375 mM KCl, 15 mM MgCl2, 50DTT), 50μM 
Oligo (dT)18 primer, 50μM Random hexamer primer, 40u/
μl RNasein, and 10 mM dNTP). As an endogenous internal 
control, GAPDH was used. The 2^(-ΔΔCT) method was used 
to examine the fold change in gene expression.[24]

The Effect of R-arazyme on the Adhesion of Cancer 
Cells
Adhesion assay was performed according to a previously 
described.[9] First, r-arazyme-treated (16, 32, 64, and, 128 
µg/ml) and untreated cells were fixed with methanol and 
subsequently stained with 1% toluidine blue in 1% sodium 
tetraborate and solubilized in SDS 1%. Finally, the absor-
bance at 540 nm was measured.

Matrigel Assay to Detect Invasion
To detect invasion by the Matrigel assay, cold Matrigel 
(Basement Membrane Matrix, BD Biosciences, NJ, USA), 
which was previously diluted with serum-free RPMI-1640 
medium, was added to the upper transwell chambers (8-
mm pore size, Corning Costar Co., MA, USA). Next, RPMI-
1640 medium (supplemented with 10% FBS) was added to 
the lower chambers. The gel was formed at 37 °C for 30 min. 
MCF-7 and SKOV3 cells (2×105/mL) were incubated with r-
arazyme (16, 32, 64, and, 128 µg/ml) in serum-free RPMI-
1640 medium at 37° C and 5% CO2 for 1 h, then added to 
the upper transwell compartment and incubated at 37 °C 
and 5% CO2 for 5 h. After eliminating non-invasive cells, 
paraformaldehyde (3.7%) was employed to fix (for 15 min) 
the cells underneath the membrane filter and then stained 
with a 0.1% toluidine blue solution. Next, the filters were 
incubated with 1% SDS solution (200 mL) at 37 °C for 1 h. 

The absorbance of this solution was measured at 600 nm 
on a 96-well ELISA plate.[25]

Statistical Analysis
GraphPad Prism 8.0.2 (GraphPad Software, San Diego, Cali-
fornia, USA) was used for statistical analyses. The results 
were analyzed by one-way analysis of variance and un-
paired t-test of independent experiments. All values are 
presented as the Mean±standard error of the mean (SEM), 
and a p-value of < 0.05 was considered statistically signifi-
cant (*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001 and ns 
(non-significant)). 

Results

R-arazyme Exhibited High Cytotoxic Activity 
Against MCF-7 and SKOV3 Cells
The cytotoxic effect of r-arazyme against MCF-7 and SKOV3 
cells was determined using the MTT assay. Figure 1a and 1b 
shows that r-arazyme treatment dose-dependently reduced 
MCF-7 and SKOV3 cell viability (p<0.0001), and at concentra-
tions more than 32 µg/ml, cell viability was reduced by over 
50%. The IC50 values of r-arazyme against MCF-7 and SKOV3 
were 30.40 and 38.86 µg/ml, respectively.

R-arazyme Induced LDH Releasing from MCF-7 
and SKOV3 Cells
The cytotoxicity effect of r-arazyme on MCF-7 and SKOV3 
cells was evaluated by using the LDH enzyme release as-

Figure 1. The cytotoxic effects of r-arazyme on MCF-7 and SKOV3 cell 
lines using MTT (a and b) and LDH (c and d) tests. The cell lines were 
incubated with different concentrations of r-arazyme (4-128 µg/ml). 
Data represent the mean±SEM of three independent experiments. 
The statistical differences (*p<0.05, **p<0.01) analyzed by unpaired 
t-test and one-way ANOVA.
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say. Similar to the MTT results, the cytotoxicity of r-arazyme 
was dose-dependently increased following the addition 
of MCF-7 and SKOV3 cells medium (p<0.0001). However, 
SKOV3 cells were affected by r-arazyme at a concentration 
lower than that in MCF-7 cells (Fig. 1c and 1d).

R-arazyme Caused Apoptosis of MCF-7 and SKOV3 
Cells
To determine whether the cytotoxic effect of r-arazyme 
against MCF-7 and SKOV3 cells is due to apoptosis or not, 
Annexin V/PI double staining was performed. As shown in 
Figure 2, the percentage of viable cells in the r-arazyme-
treated groups significantly decreased in a dose-depen-
dent manner (P< 0.05). Following treatment, the percent-

age of early apoptotic MCF-7 cells with 32, 64, and 128 µg/
ml of r-arazyme significantly increased from 5.01% in un-
treated cells to 21.3, 34.6, and 58.7%, respectively (p<0.05). 
After treatment with 16, 32, 64, and 128 µg/ml of r-arazyme, 
the percentage of late-stage apoptotic MCF-7 cells signifi-
cantly increased to 10.3, 30.6, 57.5, and 29.6%, respectively. 
The percentage of early apoptotic SKOV3 cells following 
treatment with 32, 64, and 128 µg/ml of r-arazyme sig-
nificantly increased from 3.66% in untreated cells to 14.6, 
15.4, and 44.2%, respectively (p<0.05). In the presence of 
32 and 64 µg/ml of r-arazyme, the percentage of late apop-
totic SKOV3 cells was significantly higher than that of early 
apoptotic cells (p<0.05). There was no significant difference 
between early and late apoptotic SKOV3 cells in the pres-
ence of 16 and 128 µg/ml r-arazyme (p>0.05).

R-arazyme Increased Caspase Activity
To examine the cell apoptotic pathway induced by r-ara-
zyme, we analyzed caspase-3 and caspase-9 activities in 
MCF-7 and SKOV3 cells. As shown in Figure 3, the caspase 

Figure 2. The effect of different concentrations of r-arazyme on MCF-
7 (a: control, b: 16, c: 32, d: 64 and e: 128 μg/ml) and SKOV3 (g: control, 
h: 16, I: 32, j: 64 and k: 128 μg/ml) cells apoptosis using Annexin V/PI 
staining using flow cytometry. Illustrative figures display the popu-
lation of viable (Annexin V- PI-), early apoptotic (Annexin V+ PI-), late 
apoptotic (Annexin V+ PI+), and necrotic (Annexin V- PI+) cells. f and 
l: The percentage of early and late apoptotic MCF-7 and SKOV3 cells, 
respectively. Data represent the mean ± SEM of two independent ex-
periments. *p<0.05, **p<0.01.

Figure 3. Caspase-3 and −9 activation in MCF-7 (a) and SKOV3 (b) 
cells after treatment with r-arazyme. The relative fold caspase-3 and 
caspase −9 activity were measured in MCF-7 and SKOV3 treated cells 
with 16-128 µg/ml of r-arazyme. Data represent the mean±SEM of 
three independent experiments. *p<0.05, **p<0.01.
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3 and 9 activity of SKOV3 and MCF-7 cells after treatment 
with 32 µg/ml of r-arazyme significantly increased com-
pared with the untreated cells (p<0.05). Furthermore, at 
the concentration of 64 µg/ml, caspase-9 activity was sig-
nificantly increased in the SKOV3 cell line (p<0.05).

R-arazyme Decreased Angiogenesis and Apoptosis 
Genes Expression
Figure 4 depicts the mRNA expression of VEGF-A, VEGFR-1, 
and VEGFR-2 in MCF-7 and SKOV3 cell lines using RT-PCR. 

The expression levels of VEGFR-1 and VEGFR-2 were sig-
nificantly reduced in MCF-7 and SKOV3, respectively, com-
pared with the untreated cells (p<0.05). Our results indi-
cated that after incubation of MCF-7 and SKOV3 cells with 
r-arazyme, the BAX mRNA expression level was consider-
ably increased (p<0.05). Conversely, the expression level of 
the BCL-2 gene was remarkably decreased. Taken together, 
the BAX/BCL-2 ratio of MCF-7 and SKOV3 cells considerably 
increased.

R-arazyme Reduced Tumor Cell Adhesion and Invasion
As shown in Figure 5, in a dose-dependent manner, r-ara-
zyme may significantly reduce cell adhesion (p<0.0001). In 
addition, the adhesion of MCF-7 (a) and SKOV3 (b) cells in 
the presence of respectively 32 and 16 µg/ml of r-arazyme 
significantly decreased compared with the other concen-
trations and untreated cells (p<0.05). In a dose-dependent 
manner, r-arazyme inhibited MCF-7 (c) and SKOV3 (d) cell 
invasion to the Matrigel-coated substrate (p<0.001). After 

Figure 4. The analysis of apoptosis-related genes in MCF-7 (a) and 
SKOV3 (b) cells by Quantitative PCR after treatment with (30 µg/ml) 
r-arazyme. Relative mRNA levels of BAX, BCL-2, VEGFR-1, VEGFR-2, 
VEGF-A, and BAX/BCL-2 ratio in treated MCF-7 and SKOV3 cells ver-
sus untreated cells are expressed as the mean±SD of at least three 
independent experiments. *p<0.05.

Figure 5. The effect of r-arazyme on MCF-7 and SKOV3 cells adhesion 
and cell invasion. Different concentrations of r-arazyme (16-128 µg/
ml) were added to MCF-7 (a and c) and SKOV3 (b and d) cells. To 
detect the adherent cells after 3 hours of incubation, the adherent 
cells were stained by toluidine blue 1% in sodium tetraborate 1%. To 
detect the invasion, the migrated cells were stained with a 0.1% tolu-
idine blue solution after 15 min fixation in paraformaldehyde (3.7%). 
Data represent the mean±SEM of three independent experiments. 
*p<0.05, **p<0.01.
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exposure of MCF-7 cells to 32 μg/ml of r-arazyme, tumor 
cell invasion decreased by 78.26% (p<0.05). Moreover, in-
cubation of SKOV3 cells with 64 µg/ml of r-arazyme signifi-
cantly decreased tumor cell invasion by 74.3% compared 
with untreated cells (p<0.05).

Discussion
Bacterial-derived products such as toxins and proteases 
have been considered therapeutic strategies for treating 
various human cancers.[9] The metalloprotease arazyme 
has recently exhibited a significant anti-cancer effect in 
a mouse metastatic melanoma model by triggering the 
cleavage of tumor MMP-8 antibodies and tumor cell 
surface CD44.[9, 22] Arazyme, in addition to its proteolytic 
action, has been shown to activate macrophages and 
dendritic cells, as well as enhance pro-inflammatory cyto-
kine production and surface activation markers via TLR4-
MyD88-TRIF and MAPK-dependent signaling pathways. It 
can also boost IFNγ-dependent CD4+ and CD8+ T cell and 
B lymphocyte responses, which are critical in generating 
an anti-tumor response.[9] In the current study, the effi-
cacy of r-arazyme as an anti-cancer drug was examined 
using MCF-7 and SKOV3 cells.

In evaluating the cytotoxic activity of r-arazyme in vitro 
against MCF-7 and SKOV3 cells, we found that r-arazyme 
has dose-dependent anti-proliferative activity. The MTT 
test results reveal that r-arazyme has a high potential for 
suppressing cell growth and killing ovarian and breast can-
cer cells. Irreversible damage to the cell membrane causes 
the release of LDH from the cytoplasm of apoptotic and ne-
crotic cells.[26] The results of the LDH release assay indicated 
that r-arazyme led to potent cytotoxic effects against MCF-
7 and SKOV3 in a dose-dependent manner by elevating the 
LDH level and cell permeability, which increased cell death. 
The MTT and LDH release assays results indicated that r-
arazyme plays a crucial role in inhibiting cell proliferation 
and inducing human ovarian and breast cancer cell death.

We used an Annexin V/PI flow cytometric assay to evaluate 
the cell death pathways induced by r-arazyme. Analysis of 
flow cytometric results showed that r-arazyme treatment 
increased the number of cells to early and late apoptosis. 
Unlike necrosis, in apoptosis, dead cells are removed by im-
mune cells such as macrophages, which ultimately does not 
result in adverse inflammatory responses, no damage to nor-
mal cells, or tissue damage but maintains the homeostasis of 
cells.[27] Cancer cells gain and exhibit resistance to apoptosis 
to maintain their uncontrolled proliferation; therefore, the 
potential of r-arazyme to inducing apoptosis can be consid-
ered a suitable characteristic to develop a chemotherapeutic 
agent against cancer in future studies.[28]

Apoptosis is a complex process that is categorized into two 
mechanisms: caspase-dependent and caspase-indepen-
dent mechanisms.[29] The two main caspase-dependent 
pathways, including the extrinsic and intrinsic cascades, 
are characterized by the presence of caspase-8 or cas-
pase-9, respectively. Otherwise, the activation of caspase-3 
was detected in both intrinsic and extrinsic pathways of 
cell death.[27] In evaluating the molecular mechanism of the 
apoptosis process, we found that r-arazyme increased the 
activity of caspase-3 and 9 in a concentration-dependent 
manner, which confirmed that r-arazyme inhibits the sur-
vival of cancerous ovarian and breast cells via both intrinsic 
and extrinsic apoptosis pathways.

In addition, the apoptotic effects of r-arazyme in MCF-7 and 
SKOV3 cells were confirmed by the up-regulation of BAX 
and down-regulation of BCL-2, which are essential genes 
in the intrinsic pathway of apoptosis.[30] The anti-tumor ef-
fects of many drug components have been demonstrated 
through the BAX/BCL-2 pathway.[21, 31, 32]

Tumor cell invasion and metastasis are multi-stage dynam-
ic processes that involve cell adhesion, proteolytic degra-
dation, migration, and angiogenesis.[33] Targeted anti-can-
cer drugs disrupt specific molecules that play a vital role in 
the growth of tumor cells, survival, migration, and spread 
of cancer invasion, thereby preventing the progression 
of tumor cells.[34] Data from the potency assessment of r-
arazyme revealed a significant reduction in invaded cells to 
the Matrigel-coated substrate in a dose-dependent man-
ner, which ultimately inhibited the adhesion and invasion 
of the treated MCF-7 and SKOV3 cells effectively.

VEGFR-1 and VEGFR-2 are common anti-angiogenesis tar-
get molecules because they are the main intermediaries of 
angiogenesis in physiological and pathological conditions. 
Inhibition of angiogenesis is an essential step in the pre-
vention and treatment of cancer because the excess con-
centration of angiogenesis inhibitors over angiogenesis 
stimulants can inhibit tumor growth and release it to other 
organs.[35] R-arazyme effectively inhibited ovarian and 
breast cancer cell angiogenesis because of a significant 
reduction in the expression of the angiogenesis-related 
genes VEGFR-1 and VEGFR-2. 

Conclusion
R-arazyme can be used as a suitable option for the treat-
ment of patients with ovarian and breast cancer because it 
can modulate the activity or expression of regulating pro-
teins during apoptosis, invasion, adhesion, and angiogen-
esis. According to these findings, a complete evaluation of 
r-arazyme under controlled clinical conditions seems war-
ranted against different tumor cells. Our results reinforce 
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the hope that the therapeutic potential of r-arazyme can 
reduce the high morbidity and mortality of ovarian and 
breast cancers, although further studies are needed to de-
termine the detailed mechanism of action.
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